AMBIGUOUS CLASS NUMBER FORMULAS

CHIA-FU YU

Abstract. An elementary proof of Chevalley’s ambiguous class number formula is presented.

1. Introduction

In Gras’ book [2, p. 178, p. 180] one finds Chevalley’s ambiguous class formulas. In Lemmermeyer [3] one finds a modern and elementary proof. This Note gives a different elementary proof of this result, which uses basic results proved in Lang’s book [1].

Let K/k be a cyclic extension of number fields with Galois group $G = \text{Gal}(K/k) = \langle \sigma \rangle$, where σ is a generator of G. Denote by \mathfrak{D} and \mathfrak{D}_{∞} the ring of integers of k and K, respectively. Let ∞ and ∞_r (resp. $\tilde{\infty}$ and $\tilde{\infty}_r$) denote the set of infinite and real places of k (resp. of K), respectively, and A_k (resp. A_K) the adele ring of k (resp. K). We shall identify a real cycle c with its support, which is a subset of real places. Let $r_k : \tilde{\infty} \to \infty$ denote the restriction to k.

Let \tilde{c} be a real cycle on K which is stable under the G-action. Denote by

$$\text{Cl}(K, \tilde{c}) := \frac{A_K^\times}{K^\times \mathfrak{D}^\times K_\infty^\times(\tilde{c})^\times},$$

the narrow ideal class group of K with respect to \tilde{c}, where \mathfrak{D} is the profinite completion of \mathfrak{D}, and $K_\infty^\times(\tilde{c})^\times = \{ a = (a_w) \in K_\infty^\times \mid a_w > 0 \ \forall \ w \in \tilde{c} \}$. Similarly one defines $\text{Cl}(k, c)$ for any real cycle c on k. The group G acts on the finite abelian group $\text{Cl}(K, \tilde{c})$. Its G-invariant subgroup $\text{Cl}(K, \tilde{c})^G$ is called the ambiguous ideal class group (with respect to \tilde{c}).

Let ϵ be the real cycle on k such that $\infty_r - \epsilon = r_k(\tilde{\infty}_r - \tilde{\epsilon})$ and $\epsilon_0 := r_k(\tilde{\epsilon})$. One has $\epsilon = \epsilon_0 \infty^c_\epsilon$, where ∞^c_ϵ is the set of real places of k which does not split completely in K. Let $N_{K/k}$ denote the norm map from K to k. The cycle ϵ is determined by the property $N_{K/k}(K_\infty^\times(\tilde{c})^\times) = k_\infty^\times(\epsilon)^\times$. Put $\phi(\epsilon)^\times := \phi^\times \cap i_\infty^{-1}(k_\infty^\times(\epsilon)^\times)$, where $i_\infty : k^\times \to k_\infty^\times$ is the diagonal embedding. Denote by V_f the set of finite places of k. Let $e(v)$ denote the ramification index of any place w over $v \in V_f$.

Theorem 1.1. One has

$$\# \text{Cl}(K, \tilde{c})^G = \frac{\# \text{Cl}(k, \epsilon) \prod_{v \in V_f} e(v)}{[K : k][\phi(\epsilon)^\times : \phi(\epsilon)^\times \cap N_{K/k}(K^\times)]}.$$
When $\tilde{c} = \infty$, we get the restricted version of the formula stated in [2, p. 178]. When $\tilde{c} = \emptyset$, using an elementary fact
\[
\# \text{Cl}(k, \infty) = \frac{h(k) \cdot 2^{[\infty : \sigma(\infty^\times)]}}{\sigma^\times : \sigma(\infty^\times)\sigma^\times},
\]
we get the ordinary version of the formula stated in [2, p. 180].

2. Proof of Theorem 1.1

Define the norm ideal class group $N(K, \tilde{c})$ by
\[
(2.1) \quad N(K, \tilde{c}) := \frac{N_{K/k}(\mathbb{A}_K^\times)}{N_{K/k}(K^\times \hat{O}^\times K_\infty(\tilde{c})^\times)}.
\]
Consider the commutative diagram of two short exact sequences (by Hilbert’s Theorem 90)
\[
\begin{array}{ccccccc}
1 & \longrightarrow & \mathbb{A}_K^{1-\sigma} \cap U & \longrightarrow & U & \longrightarrow & N_{K/k}(U) & \longrightarrow & 1 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
1 & \longrightarrow & \mathbb{A}_K^{1-\sigma} & \longrightarrow & \mathbb{A}_K^\times & \longrightarrow & N_{K/k}(\mathbb{A}_K^\times) & \longrightarrow & 1,
\end{array}
\]
where $U = K^\times \hat{O}^\times K_\infty(\tilde{c})^\times$. The snake lemma gives the short exact sequence
\[
(2.3) \quad 1 \longrightarrow \text{Cl}(K, \tilde{c})^{1-\sigma} \longrightarrow \text{Cl}(K, \tilde{c}) \longrightarrow N(K, \tilde{c}) \longrightarrow 1
\]
as one has an isomorphism $\mathbb{A}_K^{1-\sigma}/(\mathbb{A}_K^{1-\sigma} \cap U) \simeq \text{Cl}(K, \tilde{c})^{1-\sigma}$. On the other hand we have the short exact sequence
\[
(2.4) \quad 1 \longrightarrow \text{Cl}(K, \tilde{c})^G \longrightarrow \text{Cl}(K, \tilde{c}) \longrightarrow \text{Cl}(K, \tilde{c})^{1-\sigma} \longrightarrow 1,
\]
which with (2.3) shows the following result.

Lemma 2.1. We have $\# \text{Cl}(K, \tilde{c})^G = \# N(K, \tilde{c})$.

Define
\[
\text{Cl}(k, c, \mathcal{D}) := \frac{\mathbb{A}_k^\times}{k^\times k_\infty(\sigma)^\times N_{K/k}(\hat{O}^\times)}.
\]

Lemma 2.2. The group $N(K, \tilde{c})$ is isomorphic to a subgroup $H \subset \text{Cl}(k, c, \mathcal{D})$ of index $[K : k]$.

Proof. Put $A := N_{K/k}(\mathbb{A}_K^\times)$, $B := N_{K/k}(K^\times \hat{O}^\times K_\infty(\tilde{c})^\times)$, $C := k^\times$ and $H := CA/CB$. The group H is a subgroup in $\text{Cl}(k, c, \mathcal{D})$, which is of index $[K : k]$ by the global norm index theorem [1, p. 193]. One has $A \cap C = N_{K/k}(K^\times) \subset B$ by the Hasse norm theorem [1, p. 195]. The lemma follows from
\[
N(K, \tilde{c}) = A/B = A/(A \cap C)B \simeq CA/CB = H.
\]

Consider the exact sequence
\[
(2.5) \quad 1 \longrightarrow \frac{\sigma(\alpha)^\times}{\sigma(\alpha)^\times \cap N(\mathcal{D}^\times)} \longrightarrow \hat{\mathcal{O}}^\times \longrightarrow \text{Cl}(k, c, \mathcal{D}) \longrightarrow \text{Cl}(k, c) \longrightarrow 1.
\]
It is easy to see \(o(\mathfrak{c})^\times \cap N_{K/k}(\hat{\mathfrak{O}}^\times) = o(\mathfrak{c})^\times \cap N_{K/k}(K^\times) \) from the Hasse norm theorem. The local norm index theorem [1, p. 188, Lemma 4] gives
\[
\# \left(\frac{\mathfrak{d}^\times}{N(\hat{\mathfrak{O}}^\times)} \right) = \prod_{v\in V_f} e(v).
\]
Combining Lemma 2.2, (2.5) and (2.6) we get
\[
\#N(K, \tilde{\mathfrak{c}}) = \frac{\# \text{Cl}(k, \mathfrak{c}, \mathfrak{O})}{[K : k]} \prod_{v\in V_f} e(v).
\]
Theorem 1.1 follows from Lemma 2.1 and (2.7).

Remark 2.3. We do not know whether \(\text{Cl}(K, \tilde{\mathfrak{c}})^G \) and \(N(K, \tilde{\mathfrak{c}}) \) are isomorphic as abelian groups or whether there is a natural bijection between them. When \([K : k] = 2 \) and \(\# \text{Cl}(K, \tilde{\mathfrak{c}})^{1-\sigma} \) is odd, we show that there is a natural isomorphism
\[
\#N(K, \tilde{\mathfrak{c}}) = \frac{\# \text{Cl}(k, \mathfrak{c})}{\# \text{Cl}(K, \tilde{\mathfrak{c}})^{1-\sigma}}.
\]
The map \(1 - \sigma : \text{Cl}(K, \tilde{\mathfrak{c}}) \to \text{Cl}(K, \tilde{\mathfrak{c}})^{1-\sigma} \) restricted to \(\text{Cl}(K, \tilde{\mathfrak{c}})^{1-\sigma} \) is the squared map \(\text{Sq} \), which is an isomorphism from our assumption. The inverse of \(\text{Sq} \) defines a section of (2.4), and hence an isomorphism \(\text{Cl}(K, \tilde{\mathfrak{c}}) \simeq \text{Cl}(K, \tilde{\mathfrak{c}})^G \oplus \text{Cl}(K, \tilde{\mathfrak{c}})^{1-\sigma} \). The assertion (2.8) then follows.

Acknowledgments

The present work is done while the author’s stay in the Max-Planck-Institut für Mathematik. He is grateful to the Institut for kind hospitality and excellent working environment. The author is partially supported by the grants MoST 100-2628-M-001-006-MY4 and 103-2918-I-001-009.

References

Institute of Mathematics, Academia Sinica and NCTS (Taipei Office), Astronomy Mathematics Building, No. 1, Roosevelt Rd. Sec. 4, Taipei, Taiwan, 10617

E-mail address: chiafu@math.sinica.edu.tw

The Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn, Germany 53111

E-mail address: chiafu@mpim-bonn.mpg.de